Non-local Means for Scanning Transmission Electron Microscopy Images and Poisson Noise based on Adaptive Periodic Similarity Search and Patch Regularization
نویسندگان
چکیده
High-Angle Annular Darkfield Scanning Transmission Electron Microscopy (HAADF-STEM) allows to take images at atomic scale with a contrast proportional to the atomic number. STEM acquires an image line-by-line, pixel-by-pixel leading to characteristic distortions. Furthermore, STEM images of beam sensitive materials have to be taken with short exposure times, leading to low contrast images with Poisson noise. In this paper, we propose an extension of Non-local Means (NLM) tailored to STEM images of crystalline structures. To find similar patches, we introduce an adaptive non-local search strategy that exploits the periodic structure of the crystal images. Furthermore, we extend the patch similarity measure to take into account the horizontal distortions typical for STEM images. Moreover, we discuss the Anscombe transform and the Poisson likelihood ratio to deal with Poisson noise. Finally, the resulting methods are compared to BM3D with Anscombe tranform and PURE-LET on simulated and real data.
منابع مشابه
Poisson noise removal from high-resolution STEM images based on periodic block matching
Scanning transmission electron microscopy (STEM) provides sub-ångstrom, atomic resolution images of crystalline structures. However, in many applications, the ability to extract information such as atom positions, from such electron micrographs, is severely obstructed by low signal-to-noise ratios of the acquired images resulting from necessary limitations to the electron dose. We present a den...
متن کاملShearlet-Based Adaptive Noise Reduction in CT Images
The noise in reconstructed slices of X-ray Computed Tomography (CT) is of unknown distribution, non-stationary, oriented and difficult to distinguish from main structural information. This requires the development of special post-processing methods based on the local statistical evaluation of the noise component. This paper presents an adaptive method of reducing noise in CT images employing th...
متن کاملAdaptive Optimum Notch Filter for Periodic Noise Reduction in Digital Images
Periodic noises are unwished and spurious signals that create repetitive pattern on images and decreased the visual quality. Firstly, this paper investigates various methods for reducing the effects of the periodic noise in digital images. Then an adaptive optimum notch filter is proposed. In the proposed method, the regions of noise frequencies are determined by analyzing the spectral of noisy...
متن کاملEnhancement of historical printed document images by combining Total Variation regularization and Non-local Means filtering
This paper proposes a novel method for document enhancement which combines two recent powerful noise-reduction steps. The first step is based on the total variation framework. It flattens background grey-levels and produces an intermediate image where background noise is considerably reduced. This image is used as a mask to produce an image with a cleaner background while keeping character deta...
متن کاملBayesian Non-local Means Filter, Image Redundancy and Adaptive Dictionaries for Noise Removal
Partial Differential equations (PDE), wavelets-based methods and neighborhood filters were proposed as locally adaptive machines for noise removal. Recently, Buades, Coll and Morel proposed the Non-Local (NL-) means filter for image denoising. This method replaces a noisy pixel by the weighted average of other image pixels with weights reflecting the similarity between local neighborhoods of th...
متن کامل